Hypothesis testing in semiparametric additive mixed models.
نویسندگان
چکیده
We consider testing whether the nonparametric function in a semiparametric additive mixed model is a simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-of-fit test for checking parametric models against nonparametric models. It is based on the mixed-model representation of the smoothing spline estimator of the nonparametric function and the variance component score test by treating the inverse of the smoothing parameter as an extra variance component. We also consider testing the equivalence of two nonparametric functions in semiparametric additive mixed models for two groups, such as treatment and placebo groups. The proposed tests are applied to data from an epidemiological study and a clinical trial and their performance is evaluated through simulations.
منابع مشابه
Flexible semiparametric mixed models
In linear mixed models the influence of covariates is restricted to a strictly parametric form. With the rise of semiand nonparametric regression also the mixed model has been expanded to allow for additive predictors. The common approach uses the representation of additive models as mixed models. An alternative approach that is proposed in the present paper is likelihood based boosting. Boosti...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملBayesian Inference for Generalized Additive Regression based on Dynamic Models
We present a general approach for Bayesian inference via Markov chain Monte Carlo MCMC simulation in generalized additive semiparametric and mixed models It is particularly appropriate for discrete and other fundamentally non Gaussian responses where Gibbs sampling techniques developed for Gaussian models cannot be applied We use the close relation between nonparametric regression and dynamic o...
متن کاملSemiparametric models for missing covariate and response data in regression models.
We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a se...
متن کاملPackage ‘ DPpackage ’ March 15 , 2010
Description This package contains functions to perform inference via simulation from the posterior distributions for Bayesian nonparametric and semiparametric models. Although the name of the package was motivated by the Dirichlet Process prior, the package considers and will consider other priors on functional spaces. So far, DPpackage includes models considering Dirichlet Processes, Dependent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2003